
Apache OpenNLP and LLMs -
Where does OpenNLP fit in?

Jeff Zemerick

1

Hi!

I’m Jeff.

● OpenNLP user since ~2010

● PMC chair since ~2020

● Independent consultant doing cloud /
data / NLP stuff

● Pittsburgh, PA, USA

2

https://en.wikipedia.org/wiki/Pittsburgh
https://en.wikipedia.org/wiki/Pittsburgh

So where does this leave Apache
OpenNLP? What role does it have in
today’s LLM-dominated NLP landscape?

Introduction

With large language models (LLMs),
NLP has exploded in the forefront of
almost everything.

3

Does anything else
have names more

fun than LLMs?

What is Apache OpenNLP?

● A machine learning based toolkit for
the processing of natural language
text. https://opennlp.apache.org/

● Can do common NLP tasks:
○ Tokenization
○ Sentence segmentation
○ Named-entity extraction
○ Chunking
○ Language Detection
○ Parts-of-speech tagging
○ Document classification

(sentiment)

● Joined ASF incubator in 2010.
● Top-level project in 2012.
● Current version is 2.3.0 released in

July 2023.

Pre-ASF OpenNLP files on SourceForge
go back to 2003.

The team and a thanks to everyone listed
there and everyone who has ever made a
contribution to the project.

4

https://opennlp.apache.org/
https://sourceforge.net/projects/opennlp/files/
https://opennlp.apache.org/team.html

What are Large Language Models (LLMs)?

● A language model characterized by its large size.
https://en.wikipedia.org/wiki/Large_language_model

● Successor to word n-gram language models.

● Uses:
○ Sentiment analysis
○ Named Entity Recognition (NER)
○ Text generation and summarization
○ Natural language understanding (NLU)

● BERT, GPT-4, ChatGPT, PALM, LLaMa, etc.
5

○ Code generation
○ Conversational AI

Term “LLM” seems to have started after GPT-2.

https://en.wikipedia.org/wiki/Large_language_model

Overlap

6

NLU
Code generation
Conversational AI

NER
Classification

POS
Sentence segmentation

Tokenization
Chunking (Summarization)

* Not meant to be an
exhaustive list and will likely
be out of date fast…

LLMs

Today

We see LLMs + Python ecosystem can do
everything Apache OpenNLP can, plus some
more.

7

So why consider using Apache OpenNLP?

Let’s go back in time

● Python was the language of choice
for the explosion of NLP in the late
2010s.

● But what happened? Its popularity
has led to the belief that the “P” in
NLP stands for Python. /s

8

Let’s Compare
Named-entity recognition

Disclaimer - An unscientific test.

But should be sufficient for
highlighting capabilities.

Just one experiment and one
use-case!

9

Training Data - the hardest part, right?

● Used the multiNERD dataset -
https://huggingface.co/datasets/Babelscape/multinerd

● Has multiple languages and entities, but just used English text and person
entities in my training set

● This subset was converted to OpenNLP’s training format -
https://github.com/jzonthemtn/opennlp-formats

 <START:person> John Smith <END> is a person.

10

https://huggingface.co/datasets/Babelscape/multinerd
https://github.com/jzonthemtn/opennlp-formats

Notable Training Parameters

Apache OpenNLP

10 iterations (passes of the training data)
1 cutoff (each token must be seen once)

(Default parameters for first time training a
model.)

SpanMarker (Python)

1 epoch
Learning rate 0.00005

(Default parameters from the git repository
- no extra tuning was done.)

This is not an evaluation or critique of the
SpanMarker library. It’s an excellent
Python NLP library with LLM support and
a great choice for your NLP Python app.

11

https://huggingface.co/tomaarsen/span-marker-mbert-base-multinerd/blob/main/train.py
https://github.com/tomaarsen/SpanMarkerNER

Training NER Model using OpenNLP and Python SpanMarker

https://github.com/jzonthemtn/opennlp-formats/b
lob/main/src/main/java/com/github/jzonthemtn/o
pennlp/TrainTokenNameFinder.java

ObjectStream<NameSample> sampleStream = new
NameSampleDataStream(new
PlainTextByLineStream(in,
StandardCharsets.UTF_8));

TrainingParameters params = new
TrainingParameters();

params.put(TrainingParameters.ITERATIONS_PARAM,
10);
params.put(TrainingParameters.CUTOFF_PARAM, 1);

TokenNameFinderModel nameFinderModel =
NameFinderME.train("en", null, sampleStream,
params, TokenNameFinderFactory.create(null,
null, Collections.emptyMap(), new BioCodec()));

https://huggingface.co/tomaarsen/span-marker-mbe
rt-base-multinerd/blob/main/train.py

trainer = Trainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,

)

trainer.train()
trainer.save_model("models/span_marker_mbert_base_multin
erd/checkpoint-final")
test_dataset = load_dataset(dataset, split="test")

Compute & save the metrics on the test set
metrics = trainer.evaluate(test_dataset,
metric_key_prefix="test")
trainer.save_metrics("test", metrics)
trainer.create_model_card(language="multilingual",
license="apache-2.0")

12

https://github.com/jzonthemtn/opennlp-formats/blob/main/src/main/java/com/github/jzonthemtn/opennlp/TrainTokenNameFinder.java
https://github.com/jzonthemtn/opennlp-formats/blob/main/src/main/java/com/github/jzonthemtn/opennlp/TrainTokenNameFinder.java
https://github.com/jzonthemtn/opennlp-formats/blob/main/src/main/java/com/github/jzonthemtn/opennlp/TrainTokenNameFinder.java
https://huggingface.co/tomaarsen/span-marker-mbert-base-multinerd/blob/main/train.py
https://huggingface.co/tomaarsen/span-marker-mbert-base-multinerd/blob/main/train.py

Named-entity Extraction Results Comparison

OpenNLP

Model training took 184794 ms

[main] INFO
opennlp.tools.ml.perceptron.PerceptronModelWr
iter - Compressed 3163084 parameters to
108347
[main] INFO
opennlp.tools.ml.AbstractMLModelWriter - 4
outcome patterns
Model saved to /home/ubuntu/ner-multinerd.bin

Precision: 0.9388020833333334
Recall: 0.9585944919278253
F-Measure: 0.9485950568555587

BERT-based Model

Language en

Precision 99.46

Recall 99.52

F1 99.46

Training time 1.86 hours

13

184 seconds

Named-entity Extraction Results Comparison

OpenNLP

Model training took 184794 ms

[main] INFO
opennlp.tools.ml.perceptron.PerceptronModelWr
iter - Compressed 3163084 parameters to
108347
[main] INFO
opennlp.tools.ml.AbstractMLModelWriter - 4
outcome patterns
Model saved to /home/ubuntu/ner-multinerd.bin

Precision: 0.9388020833333334
Recall: 0.9585944919278253
F-Measure: 0.9485950568555587

BERT-based Model

Language en

Precision 99.46

Recall 99.52

F1 99.46

Training time 1.86 hours

14

Named-entity Extraction Results Comparison

OpenNLP

Model training took 184794 ms

[main] INFO
opennlp.tools.ml.perceptron.PerceptronModelWr
iter - Compressed 3163084 parameters to
108347
[main] INFO
opennlp.tools.ml.AbstractMLModelWriter - 4
outcome patterns
Model saved to /home/ubuntu/ner-multinerd.bin

Precision: 0.9388020833333334
Recall: 0.9585944919278253
F-Measure: 0.9485950568555587

BERT-based Model

Language en

Precision 99.46

Recall 99.52

F1 99.46

Training time 1.86 hours

15

Named-entity Extraction Results Comparison

OpenNLP

Model training took 184794 ms

[main] INFO
opennlp.tools.ml.perceptron.PerceptronModelWr
iter - Compressed 3163084 parameters to
108347
[main] INFO
opennlp.tools.ml.AbstractMLModelWriter - 4
outcome patterns
Model saved to /home/ubuntu/ner-multinerd.bin

Precision: 0.9388020833333334
Recall: 0.9585944919278253
F-Measure: 0.9485950568555587

BERT-based Model

Language en

Precision 99.46

Recall 99.52

F1 99.46

Training time 1.86 hours

16

Comparisons

OpenNLP BERT-based Model

Training Time 185 seconds 1.86 hours

Precision 0.9388 0.9946

Recall 0.9586 0.9952

F1 0.9486 0.9946

Cost AWS t4g.large @ $0.0672/hr
(2 vCPU / 8 GB RAM)

= $0.0034

AWS g5.xlarge (NVIDIA A10G) @
$1.19/hour

$1.212 * 1.86 = $2.25

* Again, not a rigorous scientific test. Some things could probably be optimized.
** AWS EC2 minimum billing is 60 seconds.

662x more expensive

36x more time

17

+~5%

Comparisons

OpenNLP BERT-based Model

Training Time 185 seconds 1.86 hours

Precision 0.9388 0.9946

Recall 0.9586 0.9952

F1 0.9486 0.9946

Cost AWS t4g.large @ $0.0672/hr
(2 vCPU / 8 GB RAM)

= $0.0034

AWS G5.xlarge (NVIDIA A10G) @
$1.19/hour

$1.212 * 1.86 = $2.25

The purpose is not to say one is always better than the other.

The goal is to highlight Apache OpenNLP’s role in today’s LLM-dominated NLP world.
18

So, what does it mean?

● What’s more important to you? Training/eval time? Cost? Precision?

● Is the ~0.4 increase in precision worth 662x the cost? 36x the time?

● What’s your current stack?

● Current architecture? Future plans?

Is $2.25 significant?
At scale, it may be.

19

Is the cost significant?

Maybe.

● Does your model use a larger training data set and
take longer to train?

● Do you need to retrain the model frequently due to
model degradation?

● Do you need multiple models?
○ Separate models per language?
○ Separated by entity types?

The cost difference may become significant. Is $2.25 significant?
At scale, it may be.

20

Model Inference Times

● Both have low inference timing.

● Apache OpenNLP does not need a GPU.

● Apache OpenNLP needs fewer resources, in general.
○ Model file sizes are much smaller. A few KB vs. hundreds of MBs.
○ Smaller CPU, memory requirements.

● Same takeaways - is the cost significant? Maybe, depends on your needs.

21

But what about us Java devs and LLMs?

● You might have a valid reason to use LLMs (fine-tuning, etc.).

● But you want to do inference from a JVM app.

● What can we do?

22

OpenNLP 2.0 and ONNX Runtime

● OpenNLP 2.0 introduced support for ONNX Runtime.

● Can train a model in Python, convert it to ONNX, and do inference using
OpenNLP. Python folks can stay in Python, Java folks can stay in Java, and
the model can be served directly from Java - no new services required.

● OpenNLP’s support for ONNX Runtime can use NER, document
classification, and sentence embedding generation models.

Currently a work-in-progress to support other NLP tasks via ONNX Runtime. Want to help? :)

23

ONNX and the ONNX Runtime

python3 -m transformers.onnx -m nlptown/bert-base-multilingual-uncased-sentiment –feature sequence-classification exported

Convert sequence classification model to ONNX:

https://huggingface.co/docs/transformers/serialization

24

https://docs.microsoft.com/en-us/azure/machine-learning/concept-onnx
https://huggingface.co/docs/transformers/serialization

Rock[et] Solid

2525

Using a PyTorch Model from OpenNLP

U.S. Navy photo by Photographer’s
Mate 2nd Class Anthony Koch. 26

https://commons.wikimedia.org/wiki/File:US_Navy_030906-N-4459K-060_Shockwave,_the_world%27s_fastest_truck,_dazzles_the_crowd.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_030906-N-4459K-060_Shockwave,_the_world%27s_fastest_truck,_dazzles_the_crowd.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_030906-N-4459K-060_Shockwave,_the_world%27s_fastest_truck,_dazzles_the_crowd.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_030906-N-4459K-060_Shockwave,_the_world%27s_fastest_truck,_dazzles_the_crowd.jpg

final Map<String, OnnxTensor> inputs = new HashMap<>();

inputs.put("input_ids", OnnxTensor.createTensor(env, LongBuffer.wrap(tokens.getIds()), new long[]{1, tokens.getIds().length}));

inputs.put("attention_mask", OnnxTensor.createTensor(env, LongBuffer.wrap(tokens.getMask()), new long[]{1, tokens.getMask().length}));

inputs.put("token_type_ids", OnnxTensor.createTensor(env, LongBuffer.wrap(tokens.getTypes()), new long[]{1, tokens.getTypes().length}));

final float[][][] vectors = (float[][][]) session.run(inputs).get(0).getValue();

Model Outputs

Now, just go through the 3d array to find the highest
scoring label for each token! George Washington was president

B-PER I-PER O O

Model Inputs

27

Implements the existing OpenNLP interfaces!
28

1 2
Summary - Two Choices - How OpenNLP Fits in with LLMS

Apache OpenNLP is still a solid choice for
NLP tasks. Model training is fast, doesn’t
require a GPU, and can be done with minimal
cost.

Can use LLMs with OpenNLP via ONNX
Runtime for some NLP tasks.

Training data

Model

Training data

Model

29

Thanks!
Jeff Zemerick

jzemerick@apache.org
https://jeffzemerick.dev

If you want to get involved, the Apache OpenNLP team would love to have you!
https://opennlp.apache.org/get-involved.html

30

mailto:jzemerick@apache.org
https://jeffzemerick.dev
https://opennlp.apache.org/get-involved.html

