Having fun with a solar panel, camera and raspberry doing IoT

Jean-Frederic Clere @jfclere
Agenda

- Introduction.
- How it started...
- Next the zero + big panel in Neuchatel
- Looking for cheaper solution and solving problems
- Results the raspberry on the balcony
- Adding more RPI
- Making it objects other fun stuff
- Q & A
Who I am

- Red Hat employee
 - www.redhat.com
- Tomcat / httpd committer
 - Tomcat.apache.org / httpd.apache.org
- In Neuchatel Office
How does it started

- Needs of cheap cluster demos (for TomcatCon)
Bare Metal Cloud demo

N1 HAT - WIFI - MASTER - WIFI - N2 HAT

Server

FireFox / Chrome
How does it started

- Needs of cheap cluster demos (for TomcatCon)
- New RPI4 = update the cluster.
- What to do with the old ones? :)

What happens to the old ones…

RPI3
connected to relay board (hyperion)
connected the switch (manual comment)
connected wifi and internet (remote control)
Using GPIO
Apache HTTPD and cgi python
https://github.com/jfclere/door
What happens to the old ones...

RPI3

`windsensor` 9V power with USB
mcp3008 to convert the voltage using SPI
Python script to read SPI and Wifi to the other RPI3

https://github.com/jfclere/door/blob/master/mcp3008.py
What happens to the old ones…

RPI3 (well I changed it to a RPIzero W)
Controlled by a server ssh
Use raspberry pi v2 camera
Use BME280 I2C temp/pressure/humidity
What happens to the old ones = avoid this!!
Going solar Try 1

- Pi Zero W 260mA/400mA / Camera
- 9W panel
- Li-Po Rider PRO (charge and USB power)
- UPS Pico - LiPO Battery 8000mAh
problems...

- Dead after the first rainy days.
- Not really a few dollar project:
 - Solar panel: ~ 100 USD
 - Li-Po Rider PRO ~ 20 USD
 - LiPO Battery ~ 50 USD
 - Camera ~ 20 USD
Solution: Stop the RPI when needed. Try 1
- Cut the power (USB converter as off/on)
- Use Arduino and relay for off/on
- Use I2C to control the Arduino.
Solution: Stop the RPI when needed. Try2

Problems of Try1:
- Relay uses a too much energy
- Arduino doesn’t work with 3.7V

Solution:
- Use mosfet (~1 USD)
- Use ATTiny45 (1.8-5.5V, low power 300μA, ~1USD)
- Software on ATTiny (Use Arduino IDE)
- Software on RPI3 python+shell script
- Cadaver and webdav to send images to server
Going solar try2

With BME280 I2C sensor
Going for next tries

- Cheaper panels ~20USD
- Small batteries (and cheaper) ~ 10USD
- Self made boxes (~1USD)
- Cheaper USB converter
 - PowerBoost 500 Basic 1.8V to USB (~10USD)
Failures panel
Failures printing box
Failures humidity
2021 year running version
Current running version
Going Objects

Price: about 95 USD
Small enough
Easy install (Shell script for RPI, Arduino IDE + writer for the ATTiny45)
Use Wifi (wpa_supplicant.conf)
Configuration in the server via uniqueid (/etc/machineid).

<table>
<thead>
<tr>
<th>pi4neuchatel</th>
<th>Directory where send information</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Time to wait before next cycle</td>
</tr>
<tr>
<td>440</td>
<td>Low battery voltage value (here 2.62 V)</td>
</tr>
<tr>
<td>0fd108a</td>
<td>Github commit id</td>
</tr>
</tbody>
</table>
Other fun objects

RP2040 based there are many

Smaller objects arduino nano

Micropython version for each

Use arduino IDE (ino and cpp)

No CSI so no camera but 3.3V powerable and analogue inputs and of course GPIO, I2C, SPI and UART.
Reporting and visualisation

The devices PUT data on the server (Apache HTTPD / mod_dav) Service on server put the information in PostgreSQL database

Grafana for visualisation
Try it yourself

Everything at:
https://github.com/jfclere/pisolar
https://github.com/jfclere/picow (for the RP2040 stuff).

Ask me:
jfclere@gmail.com

QUESTIONS
THANK YOU!